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ABSTRACTjfr ( 1

A detailed discussion of Nekrasov's approach to the steady water-wave

problems leads to a new integral equation formulation of the periodic problem.

This development allows the adaptation of the methods of 11] to show the global

convergence of periodic waves to solitary waves in the long-wave limit.

In addition, it is shown how the classical integral equation formulation

due to Nekrasov leads, via the Maximu- Principle, to new results about qualita-

tive features of periodic waves for which there has long been a global existence

theory (19], [12]).
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SIGNIFICANCE AND EXPLANATION

Previous work [1] showed the existence of large-amplitude solitary waves

by invoking the modern theory of global bifurcation to a sequence of approximate

problems (none of which had any physical significance in their own right), and

then passing to the limit.

The results in [14], [26], [27] proved the existence of small-amplitude

solitary waves by showing the convergence of small-amplitude periodic waves to

solitary waves as their wavelength increases indefinitely. In this paper, we

show that large-amplitude solitary waves, up to and including a wave of

'greatest height', arise in the long wave limit of periodic waves.
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ON PERIODIC WATER-WAVES AND THEIR CONVERGENCE

TO SOLITARY WAVES IN THE LONG-WAVE LIMIT

C. J. Amick t and J. F. Toland
t t

1. INTRODUCTION

1.1. Introductory remarks.

Under consideration are the steady two-dimensional waves which can arise

as the free surface of a heavy, ideal liquid acted on by gravity, and con-

tained in a channel of infinite extent with a horizontal bottom, in the

absence of surface tension effects. It is well-known that both periodic

waves [9], [12] and solitary waves [1] of large amplitude may occur in these

circumstances. A precise account of the free boundary-value problem presented

by this situation is given in the next section, and various physical para-

meters describing the flow are introduced. After some basic results about

conformal mappings and Jacobi elliptic functions have been recorded in

section 1.3, the method of Nekrasov [21] is used to reduce the existence

question for these free boundary-value problems to a similar question for

nonlinear integral equations. Throughout this section, we emphasise the role

which various physical parameters play in these integral equation formula-

tions. For example, in the periodic case, the wavelength and the mean depth

are specified a priori and appear as constants in the equations, whereas the

Department of Mathematics, University of Chicago.

ttesearch supported in part by the United Kingdom Science Research Council.

Department of Mathematics, University College London.

Sponsored by the United States Army under Contract No DAAG29-80-C-0041.



II
mean velocity, the flux and the flow velocity at the crest depend an the solu-

tion of the equation being considered. An account of this is given in

Theorems 1.5 and 1.6.

Of the two integral equation formulations (1.31) and (1.32) of the

periodic problems given in section 1.3, equation (1.32) is perhaps the more

familiar. It was used in [91 to prove a global existence theorem for periodic

water-waves (though the physical interpretation of its solutions there is dif-

ferent from ours). Equation (1.31), which is equivalent to the usual integral

equations for periodic waves ([9], [12], (20], (281), is introduced because it

has distinct advantages for our purposes in section 3. The most important of

these is its striking resemblance to the approximation used in [; section 3.2]

to prove the existence of large-amplitude solitary waves.

After a few remarks in section 2.1 about recent developments in the

theory of large-amplitude periodic water-waves, section 2.2 is devoted to a

summary and sketch of the proofs of a global bifurcation theorem for periodic

waves of wavelength X on a flow of mean depth h, where X and h are

any given positive real numbers. Among these results is the existence of a

connected set of such waves containing waves of all amplitudes up to that of

a 'wave of greatest height'. This connected set contains a wave whose

maximum angle of inclination to the horizontal is 8, for any 8 F [0, 1 + E]

where 0 is sufficiently small, and the mean velocity of all such waves

is bounded away from zero and infinity. Some of these results are already

known in a different context, while for others the proof given here is new.

For the sake of clarity, we have collected them here and expressed them in

terms of equation (1.31), which is the form in which we shall need them again

in section 3.
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In section 2.3 we show that solutions of equation (1.32) lie in a cone

which is smaller than the cone of non-negative functions in C [0, X/2],
0

namely the cone K of non-negative functions u which are decreasing on [X/4,

A/2] and such that u(x) > u(./2 - X), x 6 [0, /4J. This leads to a con-

siderable improvement in the global bifurcation theory for (1.32). We show

that the maximal connected subset of non-trivial solutions which bifurcates

from the curve of trivial solutions {(, 0) : L c l} at the first charac-

teristic va:,ae, 6Ar. -1 coth(2rh/i), of the linearised problem is unbounded,

and lies in (6..--I coth(2rh/A), -) x K. Then using the strong maximum

principle, we argue that if (vi, 0) lies in it, then S'(X) < 0 on [A/4,

X/2] The siqnificance of this observation, which lies in the fact that S

represents the anqle of inclination of the free surface (suitably parameterized)

with the horizontal, is discussed, and the possibility of extending the method

to get infnrmation about the shape of the highest wave is mentioned, but no

firm co nclusion is reached. Using an idea of Benjamin, we show that the maximum

angle of inclination of any periodic or solitary water-wave under consideration

(those in the sets C or C' in Theorems 2.2 and 3.5, respectively) is less

than 7/3.

Finally, the main result of this paper is proved in section 3, and is

summarised as follows: if h is fixed, then as X - the connected sets of

periodic waves of wavelength >. on a flow of mean depth h converge, in a

certain sense, to a connected set of solitary waves whose asymptotic height is

h. This connected set enjoys all the properties of the connected set C men-

tioned in 11; Theorem 3.91, and the behaviour of the corresponding waves is

described in [1; section 41. The global existence of solitary waves is already

known ill; what is new here is that periodic waves converge to solitary waves in

the long-wave limit. An easy corollary of our general result in this direction

is the following:
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(a) A symmetric, periodic flow of wavelength A whose mean depth is h.

If such a flow exists and if the free surface has a unique maximum per wave-

length, then a cross-section of the flow perpendicular to the wave crests may

be identified with a region in the complex z-plane between the line y = 0

and a curve {x + i (x) : x F 3R}. Here H 3R -. (0, -) is a function of

period A which is even and is decreasing on the interval (0, X/2) (see

Figure 1). one wavelength of this flow then occupies the region S bounded

by the lines x = + A/2, y = 0 and the free surface r. = {x + iH x

x r (-A/2, A/2)}. Since the fluid is supposed to be incompressible and the

flow irrotational, there exists an analytic function, the complex potential,

w * + i*, which is related to the velocity (u(z), v(z)) of the flow at a

point z E S by the expression

dw
u(z) - iv(z) = - 0= - + iy - y - ix (1.1)

dz x y y x

Since the flow is symmetric about x = 0, w must satisfy the relationship

dd (-z-) (1.2)
(Z) = (zdz = dz"

whence

j (z) = (-z) (1.3)

and

= 4C-i) (1.4)

In particular, x is zero on the imaginary axis and, by periodicity,

tx(Z) = -y (z) = 0 if Real z = +A/2 (1.5)

Let C = {z(t) t c 10, 1] 1 be any simple curve in S directed from

-A/2 + iy to A/2 + iy. Then
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f {uCz) - ivlz}dz - (-A/2 + iy) - w(A/ + iy)

C

= #(-A/2 + iy) - #(X/2 + iy)

by (1.4).

-- (*Li/2) - $l(-)L/2))

by (1.5). In particular, if C is chosen to be a horizontal line (for

example, the bottom of the d ain SA), we find that

1 1.

f f u(z)dz = d - f ftuz+iv(z)}dz = -{(IdA/2) - g(-A/2))}/ A (1.6)
C C

which is called the mean velocity and is denoted by -c. (if the flow is

considered in a frame of reference relative to which the mean velocity is

zero, then c is the phase speed of the wave.) Since the bottom (y - 0)

and the free surface r are streamlines, the stream-function * must be

constant on both, and without loss of generality, we may suppose that

z) = 0 if z c r (1.7)

Since h is the mean depth of the flow,

*(z) = -Q if Imag a = 0 * (1.8)

where

Q=ch . (1.9)

(Note that for a given flow the mean depth is not to be confused with an

integral average of the height of the free surface. It is defined by (1.9)

once the flux Q of the flow is know. By definition, Q is the value of

* on the bottom when $ has been normalized so that = 0 on the free

surface.) Finally, since rA is a free streamline, the pressure is a constant

there, and Bernoulli's theorem then implies that
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1 vyz 22 2 + g Imag z - constant (1.10)

for all z 4E r , where g is the acceleration due to gravity.

The existence question for this !"oe of periodic flow is first one of

finding the region SA occupied by one wavelength of the flow, and then one

of finding * and * such that a periodic flow of wavelength X and mean

depth h occupies SA It must be shown that * and satisfies all the

conditions (1.1) - (1.5), (1.7), (1.8) and (1.10) in S where Q is given

by (1.9) and c is given by (1.6).

(b) Solitary waves on a flow of asymptotic depth h. By a steady soli-

tary wave is meant a symmetric two-dimensional flow whose free surface is in

the form of a single symmetric wave of elevation. whose extent is infinite,

and which is asymptotic to a finite height at +- (see Figure 2). The flow

at +- is supposed to be approximately uniform horizontal flow from right to

left in the channel. The boundary-value problem posed by this situation is

first to find the flow domain S bounded by the line y = 0 and a curve

r {x + iH(x) z x f R}, where the even function H is decreasing on

(0. -) and

lim H(x) = h , (1.11)

IxI-

and then to find a complex potential w satisfying all the boundary condi-

tions, which, in this case, take the following form. The relationship between

the complex potential and the velocity field is given by (1.1), and since the

flow is symmetrical (1.2) must also be satisfied. Since the flow is supposed

approximately uniform and horizontal at points of S far from the crest,

there results that

-8-



ia u(z) - iv(z) - lim (z - -c (1.12)
II- IZI- a
zeS zeS

where -i-. is the asymptotic velocity of the steady flow. (In a frame of

reference relative to which the asymptotic speed is zero, c is the phase

speed of the wave.) Since r and the bottom are both streamlines, we may

suppose that

L 0 on r (1.13)

and

=-ch if Imagzm0 . (1.14)

0

S

h h
-C

*--ch 0

Figure 2. The region occupied by a steady solitary wave of aeyaptotic

velocity c (from right to left) and asymptotic height h.

The boundary condition (1.13) is a normalization, as before, and (1.14)

follows from (1.11) because the stream function is a constant on the bottom,

-9-
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11- 1

K = r (1 - x 2 ) 2(1 - k2x 2 ) 2 dx , (1.15)
C

and 1 1

K' = x (- x2  2(1 - (1 - k 2)x2 ) 2 dx (1.16)
C

Clea;!y K and K' are monotone functions of k . (0, 1), with K 2

and K' as k 0, while K ' and K' as k + 1.

For any ), > 0, let k be the modulus of the unique function sn(-, k.)

such that

K,
-= 4 (1.17)
h K"'

I

where K_ and K' are defined in terms of k. by (1.15) and (1.16). Since
/ A /

h is fixed, k,, K and K' are monotone functions of and

2K.
- - (1.18)

. 4h

as -, . For convenience with notation, we shall use s, to denote the
I.

elliptic function sn(., k,) for all . > 0, and s to denote the analytic

function tanh which is the pointwise limit of s. as 2. [6; page 414,

ex. 1].

It is well known [r; page 414, ex. 4) that the mapping p) from the

complex '-plane into the complex ;-plane defined by

2> (1) = -k s (2-, (1 4 ih)/')

is a conformal mapping of the region - = y + ir: - /2 < X < 2/2,

is
-h " onto the region D' = rel: 0 - r - i, s < . The

function p is analytic on R and maps the boundary portion

S .• = , *iC, / .- '/2, //2); onto the set

-11-



e is -- < s < -j, and maps ;R A. onto the non-positive real axis

in the unit disc. Let p : -,/2, /./2) w (--, -j be defined as follows:

P.(x) s for / -- /2, >/2)

if and only if s E (, - and

is
p,(/. + i) =e

Another, more convenient way of saying this is that for , [->/2, ./2),

P>(X)= s if and only if s E (--, -] and

cos + i sin s = -ikY1 2 s.(2K. (, + ih)/;)
2 2 / '

fN
(1 + k) s. (2K. x/) + ic, (2K. / )d. (2K.,!/')

= -i > ,(1.19)

1 + k-s. 2 K y)

-.here c, and d, denote the even Jacobi elliptic functions cn(-, k.)
1. /

and dn(., k.), respectively. (Algebraic identities and rules for differen-

tiating the functions c., d. and s. and given in [6; page 384]. The
'. A /,

expression (1.19) follows from the relation (1.17) and 16; page 396, eg. 3).)

Let q) : D' - R, denote the inverse of p,, and let q. (-, -]

[-,/2, /2) denote the inverse of pI" From equation (1.19) it follows that

(1 + k )s (2K q .(s)/;)
sin - = -2 21 + k s. (2K q(s)/ )

which, upon differentiating with respect to s and using (1.19) along with

the identities in [5; page 384), yields

-12-



1 2 K (1 + kA) i - k s (2KA q) (s)/A) (12s

2Cos A A k22Kq---Cos q, (1.20)
2 2+ k s 2(2K q (s.)/A) 2 o

But, by the algebraic identities relating s5 , c. and d. there results that

2 2 2 2 22
(1- kXs X) = CdXa 4(-k Xs ?

and so (1.19) and (1.20) together yield the following expression for q'

2 sin)2 2 s ] - 1 / 2  1.1

q;Cs) = -{A/(4K (1 + k ))1[cos 2  1 + sin2  (1.21)

For convenience with notation, we define the following expressions:

f (s) =1[cos 2 s + +1kA sin 2 si 1 /2 ,

i (1.22)A 2 s 1+

f(s) = 2 sec 2 '( 
2

for all s E (-.n, 7), and

A = X/(2K (1 + k )) (1.23)

Recall from (1.18) that

A - 2h/w as X- (1.24)

Since the only zeros of dpA/dC occur at C = -ih and at

= + A/2 - ih, the real and imaginary parts of q satisfy the Cauchy-

it
Riemann conditions on the boundary portion {e : - < t < 7 1 of V'.

Hence

(Imagq) -- (Real q )i s = -q (s)
A q s= is

le ae

- Af A (s) (1.25)

for all s (-w, v).

-13-



Before finishing this discussion of conformal mappings, we note that in

the limiting case when X - a mapping which takes the region

R = {X + iI : g (-), s),-h < n < 01 conformally onto V1 and the

boundary portion A = IX + iO : X E (-, =) onto {e i s  -r < s < 71, is

given by

- 2
p( ) = - tanh (v(C + ih)/4h)

= -s2(v(C + ih)/4h)

If the inverse of p is denoted by q, then it follows just as before that

(Imag q) --- (Real q)Dris s eis

h s 2h= -sec -=- f (s) (1.26)se 2

If v 1-7, Tr] -P is a continuous, odd function with v() = 0,

then there exists a unique harmonic function u on the unit disc

D < } which satisfies the Neumann boundary condition

iu/ar I = v(s), s E (-T,, 71, and the normalization conditionf u = 0.

It is easy to see that for all s , (-7, 7],

Tr

u(el s ) = f G(s,t)v(t)dt

where

(s't) = sin 9,s sin it

1 n sin((s + t)/2) (1.27)

2 ,T I sin((s - t)/2)

for all (S, t) (-7, 7] - (--, -], s O t, and u is zero on the real axis

in D. (The identity (1.27) and further properties of G are from [1, Theorem

2.51.) Note that (1.27) ensures that G(s,t) > 0 for all (st) - [0,7t] x [0,r].

s5y t.

-14-



The next theorem concerns the change of variables which enables the con-

vergence result of section 3 to be deduced from the work of (1].

THEOREM 1.1. Let V [-/2, X/2) - E be a continuous, odd function

which is positive on (0, A/2) with V(-X/2) = 0. Then putting v(s)

-V(q,(s)), for all s E (-w, ff], defines a continuous, odd function which is

positive on (0, Tr), and v(7r) = 0.

Moreover, if A is given by (1.23), then

7F

u(s) = A f G(s,t)v(t)f (t)dt (1.28)

for all s E (-n, iT], if and only if

u(s) = -U(qX(s))

where

U Q) = X/2 1 e sx(2 (X + E)/X) ic)/12
f-X/2 2, n (2K(X- V)d . (1.29)

Furthermore, there exists a harmonic function U on R. such that

U(X + iO) = U(X) , for x , [-A/2, A/2) ,

'U = V(X) , for x , (-A/2, A/2)

×+io

and U = 0 on aRA\AA

Proof. It follows from (1.19) and from the formula for the elliptic

function of a sum that, under the change of variables

X = q(s) and F = qX(t), S, t E (-iT, W]

the kernel

-15-



s (2K . + E:)/A)

2r7 s (2K (X - )

becomes

1 nn sin((s + t)/2)

2 iT sin((s - t)/2)

Since q;(s) = -Af)(s) on (-TT, T], the result for the first part of tic-

theorem is immediate.

Because v is continuous and odd on (-7, r] and v(7) = 0, it fcllo,.s

that there exists a unique function u, harmonic on D and continuous on - ,

such that

u it AfX (t)v(t)

and

- it
u(e ) = u(t)

for all t c (-Tr, iT]. Since v is odd, u is zero on the real axis in V.

Therefore U defined by

is harmonic on and continuous on RX. Since p. mars cr.t

the non-positive real axis in D, where u vanishes, it follows that U

vanishes on 3R '\A . The results for U or. A follow by (1.25).

LEMMA 1.2. For all X, [-/2, )./2] x 1-,/2, /2], \ 1

1 s (2 K (X + 0'"' 1 27it h )sin 2-
2 sn n (2 K (X - )/) = =i

-16-



Proof. This follows b7 a simple calculation from the expansion for

7 : n(u, k) [8; page 912 (20)]:

2
In sn(u, k) = n 2K+ n sin u- 1- i(

7 K X 2K

where q = e q.e.d.

THEOREM 1.3. The solutions of the linear characteristic value problem

u(s) = f J G(s,t)f. (t)u(t)dt

consist precisely of the set of characteristic values coth(

, ~ 2.Zlq, (s)

with corresponding eigenfunctions sin . In particular, the

smallest characteristic value, c z -,-- as co.

Proof. From Lemma 1.2 it follows that the set of characteristic values

of the operator defined by the right-hand side of (1.29) comprise the set

coth( and the corresponding eigenvectors are in(27 X/,

The result is then an immediate consequence of Theorem 1.1 and the fact that

A - 2h/n as X - by (1.24). Since f (x) < f2A (x) if 1 <  '2F it follows

that VA > PA by [l; Theorems A.1 and A.21. (See also Lemma 3.3.)

q.e.d.

1.4. On integral equations for water-waves.

The purpose of this section is to show the equivalence of two non-

linear integral equations, each of which is a formulation of the periodic

water-wave problem when the mean depth and the wavelength are given. Theorem

1.4 is a statement of this equivalence, while in Theorem 1.5 a precise descrip-

tioi of the wave which corresponds to a solution of equation (1.31) is given.

-17-



Theorem 1.6, which is taken without proof from [1], is a statement of the

corresponding result for solitary oraves.

Let h be fixed, as in the previous section, and let A be any positive

real number.

THEOREM 1.4. (i) If 3 [-A/, A/21 -PR is continuous, odd, and

0 < G(X) < n/2 on (0, X/2), and if for all s o (-it, 7r],

e(s) = -G(qX(s)) , (1.30)

then e (-n, ) IR is continuous, odd, and 0 < e(s) < it/2 on (0, w).

Moreover, for some p > 0, e satisfies the equation

i 1 1 sin((s + t)/2) fX(t)sin (i(t)
e(s) = gi - An sin((s - t)/2) t dt (1.31)

f f (w)sin e(w)dw
0

for all s e [-t, it], if and only if 0 satisfies the equation

1 X/2_ S X (2K A(X + sin/) (c
O(X) = 1 / 1 n Asin E(t) de (1.32)

6s/2 F A (2KA(X - E)/A) I A/P + f sin O(w)dw
0

for all X c I-A/2, X/2]. Here A is given by (1.23) and f. by (1.22).

(ii) If 0 is as in (i) and satisfies (1.32), then there exists a

harmonic function on R which coincides with 9 on the boundary portion

A , and which is zero on DR \A If 0 is used to denote this harmonic

function on RA, then

G= 1 sin (x) (1.33)

)(+iO A + f sin 0(w)dw

0

for all / + io AA -
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Proof. This result is imediate from Theorem 1.1 and equation (1.25).

q.e.d.

In order to use the methods of [I] to prove that connected sets of

periodic waves converge to solitary waves in the long-wave limit, it is

necessary to be explicit about the waves to which solutions of (1.31)

correspond.

THERI 1.5. Suppose that E is an odd, continuous function n -, w]

with 0 < 8(s) < w on (0, -) and C(-) = C, which satisfies the integral

equation (1.31) on 7-1, -] for some -.. Then - is real-analytic on

[-w, w) and satisfies 0 < -(s) < -/2 on (C. -). :-oreover, there exists a

solution of the periodic water-kave problem of period ' on a flow of man

depth h. The mean velocity of the flow is given by

c . 2/-f ~ )C s  rt)  i-3/2

=tfcos a dt - (1.34)

0 + f, ()sin =(w)dw- /

from which the flux Q and the speed at the crest qc may be calculated

as follows:

Q = ch (1.35)

and 1/3

qc= ( L) .

The free surface T, is then given b-r f (x, H (x)) x , (-1/2, A/2)),

where for x E [0. )/2],

; 2t2 1/3 0f, (t)sin F(t)

S (w.= I - " "t fit • (1.37)
AA 3g) ,I I 1/3SW (- + j f Mvsin r M dw)

and for s E_ [-w, 0],
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c-2) 1/3 0 f (tcoG 9(t)
a ts I" -- 1 dt .(1.38)

1(s) = g/ (I + I f(v)sin 8(w)dv) 1 / 3 d(

0

Pmark. In this expression for the free surface profile, the value of

0
H (0) is given by I exp(T(O + iri))dn. where T is the function in (1.39)

-h

below. Since T is uniquely determined in % by 0 and (1.39). one may

determine HI (0) explicitly in terms of ta, 0, h, and A. Unfortunately. it

does not appear possible to put this result in as neat a form as (1.34). (1.37).

or (1.38).

In Theorem 2.4, we show that the upper bound of w/2 for e may be

replaced by v/3.

Proof. The method of proof of Theorem 2.2 (ii), (Mii) applies to any

solutiom of (1.31), and not just to those in CI  Bence. the real-analyticity

of 6 and the a priori bound of w/2 for e follow imediately.

Let e be the function which is hammaic an entioned in Theorem

1.4(ii), and let T deote the unique function which is hammic an and

conjugate to 9 (that is, T - iG is analytic in R) such that

I XP2 -
X-I exp(T(x - ih))dx = (

If B denotes the hazic function an V with boundary values E.

then the real-amlyticity of 6 emres that e is real-analytic on V.

Since 0C) -o (p ~ C C) F c' the analyticity of p k on oRX nsures that

is real-analytic on and hence that T is real-analytic by the

Cauchy-Riim equations. Because ' - io is analytic on R I we can use it

to define an analytic function aon R by putting

m~)=f ex(()-i'i}c .(1.40)

-ih
-20



TYmf fackleft i in -ctive na for otherwise there exists

C2

J exp(( cas 9(adc - o
C,

mdths P- Iradicts the fact that w /2 anR by the mximum

prisciPle. S1nc (C) )to0 in It.it follows that %is mapped cow-

formaly Cato a regiam S by ;, and that i is invertible them.

Mau" 0 Is Oda n AX. mamd mzo an the rest of a it follos

that 0(c) - -e(-70 amd TCc) - T(--C). C e ~ Fm this obsezvatim and

(1.40) there remit. that -4 (c) C en-) t, Comining this with (1.39)

avi the fact that 0 - 0 an Dt\A1 yields that %~ is bouded by the

lis y - o. x -+ aid the curve r -u(J). If r lies cn the line

dx
awl gtk - e to) o+ c ts ;( o

and so fbr sm eve ftmctian FLA. we have

a further baaati d (1.40) yields that

Sin, If :is imvertIMIS e is am&tic an We. shall axm show that

If a comlex peataal a Is elfined 0 k by pttive

"(a) - $(a) + 4(a) - 1m (a)

with c gives by (1.34), tbm anl of the CONiiiiMS (1.1) -(1.10) aft

Stied, i.m the at the tbhaM will be c~lt.

J-21



IhM velocity field (no V) Senerated In iby m is given by

'II

u (a) - v (-a) a --
a4

- .(-to (S))(cs eta (a)) + i sin eta (a))) (1.42)

whm -a (a)) is the angle which the negative velocity vector nmkes

ith the z-axis, and c eamp(-?C (a))) is the qaed of the flow at

s~ ~ C k. Sla r e k. it follows that eyaticas (1.2) -

(1.4) we satisfied. Since ; - 0 an 4\A. it is imdjate frm (1.40)

that (l.S) b Ids. To show tht (1.6) is satlafled ve note that, by (1.39).

2 (-.)-. (j*))

S - .(1.4

~at.it a eTr then a IR)CNi, Whence, *Wa-n. it Aexan

ft " - 0. theA K m a-(a) - -h. ad so $(a) - -ch. It follas that.

(1.7) - (1.9) hold.

Let T % -AA/2A -2 IR denote the restrictio of T to N.. raem.

Silce 0 an ce it follows, by Cauchy's Theorem and (1.39),* that

eap(T())cs OtE)d - ezp(t(x - i))x . (1.44)
-1/2 -1./2

ftwever. frm (1.33) and the Cacby-iemma eqyatias.

TO T(0) %a t(I + N&A) I sin 9(v) l
0

for l x , t-/2, . sbstituttng this eiresait for T Ifto (1.44)

vives'



I/2

eXP(-T(O)) - - , x ) dx

(1 + (p/A) I sin e()d) 1 / 3

0

V 1 Af)(t)cos O(t)

-? t
(1 + 1 t fx(W)sil *(W)dv) 1 / 3

0

1/3
-(2 (1.46)

by (1.34), whence

3 3 _

- c ezp(-3T(0)) - 3gAc

and so (1.36) is satisfied.
1 2 2()

In order to prove (1.10), we ust show that j{u (a) + V (a)) + 9 mg aI 2

in constant an rF,, or, equvalently, that 1-C eVp(-2T(x)) + 9g i (x + i0)

is CstAt for X e [-1/2 1/21. A calculation now gives

d I 2;-tj c p (-2T Qx) ) + g 1m S (x + LO))

2
- -c exp(-2T(x))T(x) - g emp(T(X))sin G(X)

- exp(T(MO)f-c 2 e:p(-3T(X)TV(X) - g sin 9(X))

-0

by (1.45) and (1.46).

Finally, to calculate the wave profile we proceed as follows. At a point

z + iy - the free srface is given by

wle N() a -tui $1mts(3 3(3))). D e

".23-



x

H. (x) - H (0) = i (:)d.

~--1
(x)

j r tan ()cos 1()exr. (')),

0

)1/3 --1
c 2 W sin (,

(l + (/..) s±.

where / [-/2, /2] I is given by

= Real m(7 + iO)

K cos C(ix', >
J >I

0 21/3if C0(i + (0/..) f sin M(w)dw) I / 3

0

Hence if x [0, ./2],

,/'2c2 \1/3 f, (t)sin (t)

H. (x) - H, (0) Id
3g 1 1/2

U 1 (x) (. + f f, (w) sin (w)dw)
0

where
-i - --1

I, (x) o = W ( Cx)) <

and so, for s [- , 0]

i1/3/ 2\ °cos 4'')

, =(s ': ,,o (s) \ ) __ __' _ _ __ _ __
( ) q- (1 + (-g f" sin (w)d...) 1,

(2c2 i 0 f. (t)cos (t)

1 f (w)sin (w)dw) '

Thi.; complet( ; t(i, proof of the th orem.
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THEOREM 1.6. Suppose that £ is an odd, continuous funzticn cn

[-7, ] with 0 < £(s) < - on (0, 7) and r(-) = C, wh ch satisfies the

integral eauation

1 1 sin((s + t)/2) f (t)Sin (t)
(s) = f dt (1.47)

S -7 [ sin((s - t)/2) t fk ff(w) sin &(w)dw

1 t

for all s [-, T], where L > 0 and f(t) =-sec t for t (--, ).
2 2

Then 6f , LI(-7, ,), £ is real-analytic on (-, -), and 0 -(s) -/2

on (0, 7). Moreover, if h and c are any positive real numbers which

satisfy

6gh (1 + f f(w)sin e(w)dw) = 1
Trc 0

then there exists a steady solitary wave flow whose mean velocity and

asymptotic height (see section 1.2) are -c and h respectively. The

speed q of the flow at the wave crest may be calculated from the

expression

3
7q c 

1

6ghc I

moreover, the solitary wave profile F is given by ;(x, H(x)) :x .

where for x > 0,

Hx) - H(0) = 36c21 / 3 0 f(t)sin Q(t) dt (1.46)
S 3 1/3
(x) + f f(w)sin A(w)dw)

*~ 0

and for s ( (-r, 0),
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;36c 2 f (,t) Co

(S) = "" < dt (1.49)3 \2g h  s t
V 2. t -1/3

+ s (! f(w) sin -(w)dw)

0

a, . we . assert tnat tne value of H() is

2 , because the asymptotic height is known (see
gh 2 2 2

[1; Theorem 4.6]).

Proof. W, hile this t-eorem is fcrma!i-- the limiting case of Theorem 1.5

as -- , it needs a sezarate zroof. This ma' be done by modifying the

method of nroof of Theorem 1.5, using the mapzing p from R onto D'

introduced in section 1.3. The function is then required to be in

L1 (-., ), odd, -ositive on (0, -), and to satisfy

1 1 ;n tanh(-(X + )/4h) sin G( , (1.50)

tanh(-(G - -)/4h) +
2h + f sin S(w)dw

0

an ecuatlon which may" be obtained from equation (1.47) by putting

-. s -2h t 2)
- (s" , tn ), and n(sec 2-tan 2), s, t r (-', '). An

aternati--e rroof is to be found in [1; Theorems 1.1, 4.1, 4.3 and 4.6].

h f,-nction ' ir [1; Theorem 1.1] differs from that which arises in the

.~dsugse by the proof of Theorem 1.5 by a change of sign.) q.e.d.

--r th- sake of giving a complete description of Nekrasov's integral

''-atzo;.z, we include in the Appendix the eauation for periodic waves on a

ic i infinitely deel . The derivation there is slightly different

frc- th.:e alread"I in the literature, and emphasizes the dependence of the

f .aramrters on a given solution of the equation. It is shown how this

eouation cax. b written in an alternative form which involves the conjugate
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operator from the L 2-theory of Fourier series. While a similar formulation

might be adopted in the case of finite depth (see [12]), we avoid this approach

because the normalization requirement ([12; p. 1002, (1.19)] and (1.39)

above) means that when the depth is finite the conjugate operator is nonlinear.

In any case, (1.31) and (1.32) are preferred, since the dependence of the

integrand on 6 and E is given explicitly.
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2. THE GLOBAL THEORY

2.1. Background.

The first proof of the existence of large amplitude, periodic water-

waves is due to Krasovskii [123, and is based on an adaptation of the monotone

minorant theorem [113 to a particular version of Nekrasov's integral equation.

Among his results on the existence of periodic water-waves in a channel with a

wave-like bottom is included the special case when the bottom is flat. In

this case, the conclusion is that for each positive h and A, and for each

F E (0, w/6), there exists a wave of wavelength A, on a flow whose mean

depth is h, which is such that the maxim= angle of inclination of the free

surface to the horizontal is B and the mean velocity of all such waves is

bounded away from zero and infinity. Though this result is highly suggestive,

it does not amount to a global bifurcation theorem since neither the question

of bifurcation, nor the question of the existence of a connected set of solu-

tions is considered. The first result of this kind is due to Keady and

Norbury [9], who regard Nekrasov's integral equation as an example in the

general theory of global bifurcation [7], [23], [30]. Their result is the

following: if L and Q are fixed, positive real numbers, then there

exists a connected set of periodic water-waves which bifurcates from the set

of horizontal, uniform flows, each of which is of flux Q, and each of

which has wavelength 2L with respect to the velocity potential. This set

contains a wave whose speed at the crest is qc for any value of q. in

the interval (0, (2 'L tanh( ..)) 1 .

Since the mathematical theory of steady water-waves still lacks any

global uniqueness result, it is not possible to assert that the solutions

-28-
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obtained by Krasovskii are included in the connected set which

Keady and Norbury obtain. (In principle, Krasovskii's method may yield solu-

tions lying off the bifurcating set, if such exist.) Nevertheless, it can be

shown [291 (independently of the work of Krasovskii) that this bifurcating

set contains waves with maximum angle of inclination to the horizontal 8,

for all values of S in the interval (0, ir/6). Indeed, it has been shown by

McLeod 1191 that this connected set of water waves contains a wave whose

maxim- angle of inclination to the horizontal is 8, for all B E (0, w/6 + El

for s Ce E > 0.

In the next section, we shall sumarize the global bifurcation theory for

periodic water-waves of spatial wavelength A on a flow of mean depth h.

Because of our declared intention to deduce from these results the correspond-

ing theorems for solitary waves on a flow of mean depth h, we state theorems

about the periodic problem in terms of the integral equation (1.31) rather than

the equivalent equation (1.32). In section 2.3, we shall see how the use of

(1.32) leads to new results about the bifurcation of periodic waves, which are

obscured by the formulation of the problem as (1.31).

2.2. The bifurcation of periodic waves of wavelength A on a flow of mean

Throughout this section,we consider waves of wavelength A on a flow of

fixed mean depth h. Accordingly, we are interested in solutions (U, e) of

(1.31) with U > 0 and 0 < O(s) < w/2 on (0, 7). Since all solutions of

(1.31) are odd, it suffices instead to consider the eigenvalue problem
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2 fAltsin 6(t)e~)- f G(s,t) t dt (2.1)

0 f f (w) sin 6(w)dw

0

where the kernel G is defined in (1.27). Let C [a, b] denote the
0

Sanach space of continuous functions on [a, b] which vanish at a and b,

and let K0 (a, b] denote the closed, reproducing cone of non-negative

functions in C 0[a, b]. For any [a, b] c [0, 7], C[a, b] denotes the usual

banach space of continuous functions on [a, b] with the supremum norm.

For convenience with notation, we will abbreviate K [0, TI] as K0 . Since0 0*

G is non-negative almost everywhere on [0, i] x [0, w] and is the kernel

of a compact, linear Hammerstein operator on C0 [0, wI [1; Theorem 2.5(a),

(b)], it follows that this linear operator leaves K0  invariant. The linear-

ization of (2.1) about 6 = 0 is given by

(s) = 2k f G (st) fx (t)e (t)dt (2.2)
3 0 x

and from Theorem 1.3 it follows that the characteristic value with smallest

absolute value is 6A.7- coth(2_h/ " -- as X , and the corresponding

eigenvector is sin(27q.(s)/, ). Before the global bifurcation result may be

stated, one further observation is necessary.

LEMMA 2.1. Let . > 0, and let $ K0 be such that, for all

s " [0, 7] ,

f (t) sin (JO (t))
9(s) = jf G(s,t) dt (2.3)

01+ f f (w)sin(J,(w))dw
IJ 0 /

where

Jx (sgn x)minfjx(, , for all x (-]R
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Then i) 0 < 9(s) < 7r on (0, ,,), and

(ii) > = 6Ar)l' coth(2rh/A).

Proof. The proof of this result is an easy consequence of the maximum

principle, and is proved by the method used to establish [1; Theorem 3.3(a),

(c)]. No modifications are required. q.e.d.

The next result is a summary of the global existence theory for solu-

tions of equation (1.31). Throughout the discussion, the mean depth is

fixed. Let S = {(W, 6) -E (0, -) x K0 (u, e) satisfies (2.1) and

6 3 0.. {(X0 0)} where ji = 6ArXA coth(2nh/A). Section 2.3 gives more

sophisticated properties of CA; in particular, the upper bound of w/2 in

(ii) and (vi) may be replaced by w/3.

THEOREM 2.2. ((9], [12], (15], (19], (29]) Let C denote the maximal

connected subset of SX in R x C0 [0, i] which contains (A, 0). Then

(i) CA is closed and unbounded;

(ii) if (14, 0) C CX\{(uA , 0)), then > p A and 0 < 6(s) < 1/2 on

(0, ir), whence {j : u , 0) f CA} = [A' C ).

(iii) 6 is a real-analytic function on [0, ].

(iv) For each A, 6 > 0, there exists a constant B X' > 0 such that

0(s) > B., sin s (2.4)

if > 1A + 6 and (, 6) r C •

(v) If (1, 0) - C,, then the mean velocity of the wave, c(p, 0),

is given by the formula (1.34). For each A > 0, there exists a closed

interval [a,, bA] c (0, w) such that

{c(p, 0) (I, 0) " C A- c [a, , bX],
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and

U [a., b ] = (C, MI
>O

for some M > 0.

Let the speed of the corresponding flow at the wave crest, calculated

from (1.36), be denoted by qc(ii, 8).

(vi) If (n' n )} c C, and "n n as n - =, then qc ( n, 9n) - 0,

and there xists a subsequence 0n(k) I of { n} such that en(k) -*

uniformly on [6, -n] for each 6 > 0, where 9 is a non-trivial solution of

the equation

7r f (t)sin O(t)

O(S) = 0 G(s,t) f dt fofr sX (0,r] (2.5)

0 / fA (w) sin 8 (w) dw

0

The function 9 is real-analytic on (0, 7r] and 0 < e(s) < ?r/2 on (0, 7).

Furthermore, lim inf 6(s) = a > 0 and the following dichotomy holds: either
s-O+

lira O(s) = 7/6, or

lira inf 8(s) < 7T/6 < lira sup O(s)
S10+ s-O+

The periodic wave corresponding to a solution of (2.5) has a stagnation point

at its crest (i.e. qc = 0).

(vii) Let {(pn * n) } c CA denote the subsequence in (vi). Since

Nn" On) satisfies equation (2.1), it follows that the function n defined

on [0, w n] by-- n

9n (x) = 8n(X/n)
6n W n (In)

safisfies the equation
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n fA (Y/n) sin (y)
e ( W G (x/', YLn) x dy

0 I+ fX(W/in)sine (w)dw

0

for all x E [0, In ] .

Moreover, as n n I (01 converges uniformly on compact subsets ofn
e*

(0, -) to a function 6 which satisfies the boundary-layer equation

= 2c 1 9n x !sin eY) dy
1 + -! sinG (v)dw

0

and sup ( (x) > w/6. It follows that there exists an E > 0 such that,
XE (o,n)

for all n sufficiently large, lenic0[0,7] _ w/6 + E. Hence, for each

0 E [0, w/6 + c], there exists a periodic water wave of any specified

depth and wavelength, the free surface of which subtends a maximum angle to

the horizontal of 8.

(viii) For each N > 0, the set {(p, 9) E CA : < NJ is relatively

compact in the topology of 3R x CI for each integer £ > 0, where Cz

is the Banach space of -th order continuously differentiable functions on

[0, w1.

Proof. (i) The proof of this is a simple application of [7; Theorem 21

to equation (2.3), once the a priori bound of Lemma 2.1 has been noted (see

19; Lema 4.1J for a similar treatment of equation (1.32)).

(ii) That v > u follows after multiplying equation (2.1) by

fA and by the eigenfunction of the linear equation (2.2), which corresponds

to the characteristic value A' and integrating over (0, 1F).
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A slight modification of [I. Theorem 3.3(d)] yields that O(s) < x/2 on

(0. 7). In this case the crucial observation is that the function P defined

on P' by putting

P) - exp(-2 0-)) - Y(0

is a super-harmonic function on V' which attains its minimom at every point

of the boandary portion feit : t r(-., . (The use of the aupe,-harmic

pressure function P to show that the free surface of periodic water-wve,

have no vertical tangents was introduced by Spielvogel [25], and used again

in [91.) Here p and Y are defined as follows. If (u, 0) c CAR. thn

suppose that

0 (S) I a, sin Ls
L-1

and put

p(t) = - L f ( J f 1 v)sin 0(v)dv)
0

for t [-i, i]. If a 2 f i(t)dt, then it follows that

F(rei t ) = a + a rLei t

o -- 1

for r e 10, 1), t 4 (-w, w] defines an analytic function on V. Then put

(€) = Real FC)M

and

YV~ = eg j~f ezpCFCj)) -CE)dZ
0

for C r P' where q, is the inverse of the conformal mapping P
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iatroxcei in ectiou 1.2 (med prim 4koe iiffemhtm Uth this

ftfiniticm of P, the proof that 0 < v/2 follow emctly as in [1: 21-

3.3 (d) I

UUi) Tinyls tbori 1151 ensures that 0 is real-analytic an [0. v].

MiV) If this result is false. tho for s 8 -- 0 ad for each a,

there exists tun. Qn) eC A n tUiA +6,40) Xy and a n C (0, ) as-Uthat

an a n)<n -1sin s . iNr for each closed interval ta. b] c (0. v) a there

exists R > 0 (deperding an [a. hi) such that if t e a. b], te

G(s,t) > E sin s

for all s e 10, w] (see [1: Tnearen 2.5(cMi. Dunce

-I n-n n IF (t) sin 0 tM

n- sin s >e0(sn) 20 G(s t) td

Un 0a

2E b f I(t) sin 8 nt)

aI+ I f Main S0)O W dt i~

Since [a, b) is chosen arbitrarily in (0. w),* there results that

f XtMsin 8n (t)

+ f w*0 twa2-. 0 vsj v

almost everywhere in t0, v]. From the a priori bownd established In (Ui).

it follows that On - 0 in YO, ). However, an integration of (2.1) over

(0, v) after multiplication by sin s yields that
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0~ 0 1 -+ I f I Ma an a
0

On (t) "at atKjr + vf x wvsia (V )d v i

mhace s bandd, iamflsina n-140 in L 1 . ). 6veGi

the kam f a ompatinAr oPeratOr On CO [0. i11. and becamse (ii is

1h 3 IA . t fnos tata converges to 0 in Cot10. 19 tI.),i

closed ft vich there 6 1om the cotradiction that theseuec

clx+6.- converges to ia1.

(ii. C 6x > 1  0, than by (1.23) and (1.34) theme results

that

c~2a 6) (t ccmt 6 (t) -3/2

f(x Msin )a) at
0 A

ee* foa ny IN .0. thesegt (C(aO (U. 8)0) -EC1 . A - (0. NI is

bounded shove., or else tbare exists a sequnfce On0) e CA n (0, NJ,

such that

f (t) Cos o(t)

0 1/3

0s a
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thM 1AttWr CO. It t 4mm1 , YAW On b In (11) skWs. thnt

-.1. /2 In Lt 1(O.), me s"aB In L (00 ). withut ees of

gmmlity. suposethat 2/ a C [(O. 1/SI a AAat# Wo a

& - %. .. ft fto wa Inteml (a bi C (0. w). It Rollois by 1s ThAOm

23Ste)) that

b fx (t) SA n (t)
2 aa

b f Ma~ina a(t)ba
> comt. (I a t et) sin a > cont. sin s

v the constats are iMnapadent of sufficiently large n. Rnce, by

* the mminmateA amergence Theorem

t t
tA(1/ v +J en ) -. 1) t(+j f )

o a~ n0

In L2 (0.' ). as n nd. *0 *or ay > I.

sin' it f n(t sin 9 (t)

i n to On(a ) de - i ,

On

m~Jcoo It Pa (VU +J f sin Va)t-.
0 o la

* t
cc* Itt A (a + I 1 )nn (2-6)

0 0
a A 4A* me a8 ~ .



Therefore, for each integer 1, equation (2.6) gives

7 t

fsin ;s ds cos It $n(,i + f f )dt
20 30 0

It is immediate by Fulini's thieorem triat

2 f (t)

2 = 3. G(st) dt (2.7)
0 e+ f f

0

But this is a contradiction since, if a is non-zero, the right-hand side is

in C0 [0, 7] whereas the left-hand side is not; whereas when a = 0, the

right-hand side is continuous on (0, i] and vanishes at r (by [1; Theorem

2.5(f)]) whereas the left-hand side does not.

Hence the set {c(N, 6) (w, e) ~ CX, X E (0, N]} is bounded above.

In order to show that an upper bound may be found which is independent of N,

we proceed as before by seeking a contradiction. If the result is false, then

C(On' n ) - for some sequence Un, n ) , where (n , n ) C C and
n

X n . However, a slight modification of the proof of Theorem 3.1 (iv)n

yields that there must therefore exist a subsequence {(In(k)' n(k) ) } such

that (l/wn(k), en(k)) - (a, 0) E [0, -) x L2 (0, it), and

C(n(k ) '  n(k)) (t)dt)}1/2 , 2v/gT]. This is a
0

contradiction.

Finally, to show that, for fixed , the set c{, ) (, ) E C X

is bounded below by a positive constant, it suffices to observe that

(T t -1/3d }-3/2

c ~ ,) > const. {f ( - + f f M(w)sin 3(w)) dt -

0 1 0

> const. (by (iv))
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where both constants are independent of (I, 3) C X. To complete the proof,

we observe that c(ii,, 0) = tanh (2 h 1/2 0 as - 0.

(vi) Since c(,' n ) < M, it follows from (1.36) that q(Un, 6n ) -*0
n' 'n cn' n

as n - -. The asymptotic behaviour of .e n as n - - is established by a
n

slight modification of the arguments in [1; section 51, using (iv) to obtain

the appropriate estimates. The behaviour of the limiting function 6 may be

analyzed by precisely the method used to establish [1; Theorem 5.2(d) - (g)].

(vii) This is the main result of [19] reformulated in terms of the equa-

tion (2.1). The proof for equation (2.1) is identical (with certain obvious

modifications), and there is no need to repeat it here. Since C is a

connected set in JR x C [0, 7] which contains (p,, 0) and a point (v, 6)

TTT
with sup 6(s) > T + 6, it is immediate that for each 3 c [0, + c] there

sE [0, 7]

exists an element (i', 0) E C with sup 6(s) = B.
sE (0, Tr

(viii) We sketch the proof for k = 1; for general R the result follows

by induction. Let (.., 6) < C with i < N. Then the odd extension of 6 to

[--r, ] is the conjugate of the even function p defined in the proof of

(ii) (for the L -definition of the conjugate operator, which is sufficient
2

for our purposes here, see Appendix). Standard theory [31; p. 121] then

gives that

JIH < const. Id

where C'J denotes the Banach space of H6lder continuous functions on [-i, i]

with exponent Ai (0, 1), and the constant depends only on a. For

I' 2
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1 + f sin A
Qc(sI ) - (s2 ) I =_ I n,0_

1 + f f. sin eJ
0

< const. is - 2 const. N s - s3 23 1 2

Thus lo_ < const. and hence lel < const., where the constant dependsC 
C

only on N, a and A.

f (s) sin 1(s)
However, the function s s the conjugate of = - s

dsds 3 s
l/L + f s1n

0
and so Ids C  < const., whence < const., and once again the constant

dsd C 
-

depends only upon N, a and X. The result for = 1 then follows by the

Ascoli-Arzela theorem. The proof in the general case follows once one has

taken into account that the conjugate of the £-th derivative of u is the

Z-th derivative of 5.

q.e.d.

Remark. The proof of (ii) - (viii) in Theorem 2.2 did not use the

connectedness of C., and so all of these results hold with C replaced by

S-

2.3. Properties of periodic waves.

In section 2.2 the global nature of the solution set of the periodic water-

wave problem was studied through its formulation as the integral equation (1.31).

This equation bears a striking resemblance to the approximation used in (1;

section 3.2] to prove the existence of large-amplitude solitary waves. In

section 3 we shall adapt the proofs in [1] to prove that as ' .. the uounded,
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closed connected sets C converge, in a certain sense, to a global 'branch'

of solutions of the solitary wave problem.

In this section, we exploit the integral equation (1.32) to gain further

insight into the nature of periodic waves which lie on the bifurcating set

C . These results are not accessible directly from (1.31), and are new.

In this section, our interest is restricted to solutions (1, 0) of

equation (1.32). Since 0 is an odd function on (-X/2, X/21, it suffices

to consider the equation

l A/2 A(2KAx+)/) sin ( )
0(X) A(iu , G) (x) A inn e d£ (2.8)f s I (2KA (X-0)I E

0 A1A/ +f sin 0(w) dw

0

X E [0, X/21. Here A, sA and K are defined in section 1.3; the positive

parameters h and A upon which they depend are chosen arbitrarily but are

then fixed.

Since the domain RX = {(, n) : X E (-A/2, A/2), r) e (-h, 0)) is

mapped conformally onto the cut unit disc 0' {re i  t E (-t, 7T), r E (0, 1)1

by pA, the results of Theorem 2.2 have implications for the solution set of

(2.8), some of which are set out below. Let T, { I, 0) E (0, ) × K 00, X/21:

0 9 0 and (p, 0) satisfies (2.8)} u {(U, 0)}, where p =

6ArA -1 c.'th (2ffh/X) is given in Theorem 1.3. Where necessary, we shall

identify 0 E K0[0, X/2] with its odd extension to [-A/2, A/21.

THEOREM 2.3. Let EX denote the maximal connected subset of T, in

(0, -) X CO[0, X/2] which contains (uA, 0). Then

i) A N{(, 0) () =-e(pA(x)), X E [0, X/2], where (N, 6) C .
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(ii) E is closed and unbounded.

(iii) If 0 denotes the harmonic function on R, with b(x + iO) = O(X),

\ E [-X/2, X/2], and b = 0 elsewhere on 3R., then

1 sin 0(W (2.9)

D X+i 
3  X

A/v + f sin E(w)dw
0

x/ E [-X/2, X/2]. Furthermore, 0 is real-analytic on in particular,

0 is real-analytic on (0, X/2]. If 0 is non-trivial, then

(iv) 0 X(0, T) > 0, ) (A/2, ) < 0, for all n c (-h, 0).

(v) I (X, rl) > 0 for all (X, n) E (0, X/2) x I-h, 0].

(vi) E X(0, n) > 0, 0X (X/2, n) < 0 for all n c (-h, 0).

Proof. Theorem 1.4(i) and the maximality of C and E in S and
XX X

T, respectively, together prove (i). Parts (ii) and (iii) follow immediately

from Theorem 2.2. By Theorem 2.2(iii), 0 is real-analytic on D, and hence

is real-analytic on R since p is analytic there and 0() =

Bquation (2.9) is a restatement of (1.33).

To prove (iv) - (vi), we use the maximum principle. By the maximum

principle for a harmonic function u on a rectangle R we mean the fact that

min u < u(!) < max u, for all E R; while the strong maximum principle
aR aR

refers to the fact that at every point of ;R, other than corners, where the

maximum (minimum) of u is attained, the outward normal derivative is positive

(negative). Let R = (0, X/2) x (-h, 0). Since O(x, 0) = O(x) > 0 on

(0, X/2) and vanishes elsewhere on 3R, the strong maximum principle gives

(iv) and the result 0 (, -h) > 0, ,, r (0, A/2). Since (2.9) ensures that
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0 (X, 0) > 0 for all X E (0, X/2), and since 0 vanishes on the linesn n

{(X, n) : X = 0, X/2, n E [-h, 0] 1, part (v) follows from the maximum

principle. The strong maximum principle for 0 then gives (vi). q.e.d.

Theorem 2.3(i) ensures that any properties proved for elements of E may

be translated into corresponding results for C . The next three theorems concern

solutions of (2.8) with 0 < OCX) < Tr on (0, X/2), and note that the results

hold for all elements of E \ f(IkA 0)0, since such elements satisfy

0 < 0 (X) < 7r/2 on (0, X/2) by Theorem 2.2(ii)

The following theorem ensures that non-trivial elements of E satisfy

XE(X) < O(X) on (0, X/2], and, equivalently, that x1 O(x) is monotone

decreasing on (0, A/2). This property implies that O(X) < 7r/3, X E [0, A/2],

for all elements of EA, and, equivalently, that eCs) < w/3, s e [0, w], for

all elements of CA'

THEOREM 2.4. Assume that u, 0) satisfies (2.8) and 0 < O(x) < w on

(0, A/2). Then

i) x0 "(x) < 0 (x) on (0, X/2]

and

(ii) 0 < OC) < ir/3 on (0, X/2).

Proof. (i) Assume that Ci) is false, and let 0 be as in Theorem 2.3Ciii).

J-Xnce O(, -h) = 0, there follows 0 (x, -h) = 0, X ,(0, A/21, and the use of

+That this result might hold for periodic waves was suggested to us by
J. B. McLeod, who attributed it to Prof. T. B. Benjamin in the case of solitary
waves. Note that, in the periodic case, an even finer estimate may be established
by the same method, namely:

sin(!-)'X) < 1 cost C)(X) v X r (Or A/2]
A A A)C) x' 0 ~2

As X - , this reduces to Benjamin's result for solitary waves.
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this with Theorem 2.3(vi) ensures that

E (0, 0) -' (0) > C and 0 (A/2, 0) = s(A/2) < 0 (2.10)
x x

Hence, there exists X E (0, X/2) such that XO X(X , 0) > O-(X, 0). The use of

this with (2.10) ensures that for some constant d > 1

XE X(X, 0) < dO(X, 0) for all X E [0, X/2] (2.11a)

and

XG ( , 0) = dO(x, 0) for some x E (0, J/2) (2.11b)

Define a function W on R = (0, X/2) x (-h, 0) by

W(X, n) = x (x, n) - dE(X, n)
X

It follows that W vanishes on the lines {(0, n) : n E (-h, 0)} and

{(X, -h) : X E (0, X/2)}; that W is negative on the line {(X/2, r)

n E (-h, 0)} by Theorem 2.3(iv); and that W is non-positive on the line

{(X, 0) : X E (0, X/2)} by (2.11a). Hence, W < 0 on 3R. A calculation

yields

A- 2 - 2 -lW=2d

S W - -L (d - 1)W = ?- (d - l)R > 0 in R (2.12)x x

Standard theory (22; p. 64, 671 applied to (2.12) ensures that W < 0 in R

and that the normal derivative of W is positive at any point on R (other

than the line X 0 since (2.12) is singular there) where W equals zero. B;

(2-11b), W(X, 0) 0 for some x E (0, X/2), and so W (X, 0) must be positive.

A calculatinn yields

0 < W(X, 0) = XO (h, 0) - (, 0)
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d 1 sin 0(X) 4/ sin E (X
= X 3- (x 3~ I ®X)

A A, +f sinJ E)A + f sinr>
0 0

dJ o(X ) cos 0 sin E_^- 0 (2.13)
sin (2.13)

AIi + fX sin E )

0

where we have used the relation Xd(X) d0(X) from (2.11b). Since <

it follows that the right-hand side of (2.13) is negative, and this is the

desired contradiction.

(ii) The arguments for Theorem 2.2(ii) show that 9 < 7/2, and the use of

this with (i) ensures that X-1 sin O(X) is monotone decreasing on (0, >/2).

Hence,

sin 0(c) sin O(E) sin 9(E)

A/p + f sin 0 f sin sin w dw
0 0 0

sin O(F) 2
=- for all E E (0, \/2)S S

sin 0() f w dw
0

The use of this estimate in (2.8) yields

0(X) < 2- / in x + E -I- for all X (0, V/2)
0 s xKx(X -E)/A) E

and making the transformation E = q (t) and X = qA(s), s,t (--, 0), CTives

in the notation of Theorem 1.1,

0q (t)

0() = -e(s) < - 4 f 0 G(s,t) q(t dt , s -- , 0)
-Tr q(t

Since e is an odd function, there results that
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e (s) < 4 f G(s,t) ) dt ,s c (0, T) (2.14)0 ql (t) '

Since q;(t) =-Af X (t) , we have

q' (t) f (t)

t f w) dw

0

It is noted in the proof of Lemma 3.2 that f,(t)/f(t) is monotone decreasing
1 t

on (0, iT), where f(t) = 1 sec -. It follows that

< (t) f A(t) fx (t) f t2 2t t t
q jt __f__w fx(t) I I f(w)dw

o f(w) f(w)dw f(t) f (w)dw

and so

1 t
4-- sec -

2 2e(s) < - G(s,t)at , s ( , )

o £n(seec tn

A simple calculation gives

1 t
- sec -
2 2 1(tan + cot , t E (0, i)

Zn(sec t + tan t) 2
2 2

and so

(s) < f G(s,t) (tan L + cot -)dt - t + L =
302 2 3 3 3

The evaluation of the integral in the expression above is given by [1; Theorem

2.5(d), (e)]. q.e.d.

Remark. A more precise estimate using the right-hand side of (2.14) is not

possible since one can show that this quantity approaches n/3 as s - 0.
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Obviously, part (ii) of Theorem 2.3 follows from the abstract global

bifurcation theory for positive operators (71 using the reproducing cone

K 0[0, ./2] (see [9]). The next results of this section (Theorems 2.5 and

2.6) are a consequence of the observation that a smaller cone K is more

appropriate in the study of equation (2.8). Here K = {u E K0 [0, x/2]: for

all X E [/4, X/21 and for all x E [A/2 - X, X], u(X) < u(X )}. Note that

if u K, then u is non-increasing on [X/4, X/2], and hence K is not

reproducing in C 0[, X/21. Our ultimate aim is to show that E, c (0, -) x K,

and hence that 0'(X) < 0 on [X/4, A/2] for all non-trivial (P, O) E E .

THEOREM 2.5. If (u, 3) is as in Theorem 2.4, then 8 E K.

Proof. Let - be as in Theorem 2.3(iii). Let X E (1/4, 1/21 and

X E 1G/2 - X, x), and define a E (X/4, X/2) by a = + - X )/2. To prove the

theorem, we claim that it suffices to show that for all a c (X/4, X/2)

O(X, 0) > G(2 - x, 0) for all X c [2a - X/2, a] ; (2.15)

indeed, since X E [2a - X/2, a], it follows from (2.15) that 0(X ) =

" * . * " -
, 0) > 0(2a - X , 0) = 0(X, 0) = 0X).

Assume that (2.15) is false for some a E (/4, X/2). For each number

d > 1, define the continuous function g by

q(d) = min {do(X, 0) - 0(2a - X, 0)}

The function SUl, 0) is strictly pnsitive on [2a - X/2, al since this closed

interval is contained in (0, ?/2). Hence, g(d) is positive for all suf-

ficiently large d, anl since q(1) 0 , there exists D > 1 such that

q(D) 0. It follows that

DO(, 0) > C'(2 , - ;, 0) for all / 1 I2, - )./2, a) , (2.16a)
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and

D6(X, 0) = 0(2a - X, 0) for some X E (2a - A/2, a) (2.16b)

Let R denote the region (2a - A/2, a) x (-h, 0), and define a

harmonic function VC on R by

V4cX, n) = D6(X, n) - 0(2a - X, n)

for (X, n) E Ra . It follows with the use of (2.16a) that Va > 0 on ;R' ,

and the maximum principle then ensures that Va > 0 in R. Since V4(X, 0) = 0

by (2.16b), the strong maximum principle gives

0 > Vo . 0) = E66 0) - 0 (2a - X, 0): nn n

D sin OX) sin 0(2a - X)

x 2ci-X
3(A/w + f sin 0) 3(A/w + f sin 0)

0 0

D sin 0(X) - sin 0C(2a - X) (2.17)

2a-x
3(A4 + f sin 0)

0

Equation (2.16b) yields

D sin O(X) = D sin(0(2a - X)/D) > sin 0(2a - X)

since D > 1 and 0 < w (indeed, 0 < r/3 by Theorem 2.4(i)). The use of

this inequality in (2.17) yields a contradiction, and so we conclude that

(2-15) holds. q.e.d.

The following theorem gives various properties of 0 implied by member-

ship in K.

THEOREM 2.6- Let (u, 0) be as in Theorem 2.4, and let 0 be as in

Theorem 2.3(iii). If, in addition, X c (A/4, X/2) and X [,/2 - X, X), then
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i) 6CX, n) < e(X*, n) for all n c (-h, 01

and, in particular, 0(i) < O(X*).

(ii) e (X, n) <n (X , n), for all n c [-h, 01

Mozeover,

(iii) (X, n) < 0 and 6,,(X, n) < 0 for all Q, n) c [1/4, k/2] x (-h, 0];

in particular, e'(x) < 0 for X c [/4, X/21 .

(iv) 9(0, n) + (.X/2, rn) > 0, and 9 (0, n) + (X/2, n1) > 0 for

all n c (-h, 0); and, in particular, G'(0) + C)1/2) > 0

Proof. Ci) Since 0 9' 0, we know from Theorem 2.4(i) that 0 < O(X) < ir/3

on (0, X/2). Combining this with the fact that 0 e k, yields that for

X1 (/4, X/2] and X2 - [X/2 -X 1, XI),

sin X) sin E) Q 2)< - (2 .18 )

A/u + f sinO A/+ f 2 sin 0
0 0

now supose X c (X/4, X/2) and X E [ /2 - j, j), and put a C( + )2.

Define a hazmonic function WV on R by putting

WOCx, n) = 6(X, n) - O(2a - X, n)

for all CX, n) e Rol - (2a - A/2, a) x (-h, 0). Then

W(2a- X/2, n) > 0 , n E (-h, 0]

WNa(X, 0) > 0 , Xc (2a- A/2, a)n

by (2.9) and (2.18); and WO - 0 elsewhere on DRa. By the maximum principle
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> 0 on R, and by the strong maxium principle W (x, 0) > 0 for all
*

X e (2a - Al/2, c). In particular, for x = X e (2o - X/2, a), there results

that

elx , n) - o, n) > 0

for all o 6 (-h, 01, and i) has been established.

(ii) We first prove (ii) for n - -h and n - O. Since W' > 0 on

and is zero on the line {(X, -h) - X c (2a - A/2, a]}, the strong maximum

principle for W gives W(X, -h) > 0, X £ (2a - A/2, a). If we set

X - X e (2a - A/2, a), then the case n -h is proved. It was shown in the

proof of i) that w (X, 0) > 0, X 4 (2a - V2, a), and so the result for
nt

n - 0 follows upon setting X - X

We now show that WC(X, n) > 0 on Rol, so that the result for n c (-h, 0)n

in (ii) will follow upon setting X - X . Because of the maximum principle

for V4, it suffices to show that W' > 0 on RO; note that this has

already been done for the horizontal portions of the boundary. For n e (-h, 0),

we have

WV(, n) ( 0 (c, n) - [ (i, r) = 0
ii n n

and

Wci(2a - /2, n) - (2m - X/2, n) -0 (Al2, n) - (2m - X/2, n) > 0
n n n n

by Theorem 2.3(v).

(iii) If ci E [A/4, A/2), and W0 is the harmonic function defined on

the region R as above, then it follows by the strong maximum principle that

W a (a, n) < 0 (2.19)
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for all n E (-h, 0), whence, putting =X,

(x, rn) + o, Cx, ri) < 0 , (X, n) E [P/4, ) /2) x (h ). (.0
A

(Although (2.19) only proves (2.20) for X < A/2, the result for X - A/2 is

due to Theorem 2.3(iv).) Differentiating (2.9) with respect to X yields

that

0 ( Xos - sine (2.21)

,I (X,0) A/u + f sine (A/ + f sin 0)2

0 0

which, combined with (i) above, yields

E n Eo) < X /4, X/2) (2.22)

Hence, 0 does not attain its maximum on the line segmentA

{(, 0) : X E (A/4, A/2)), by the strong maximum principle. Combining

(2.20), (2.22) and Theorem 2.3(vi) yields that (X (V4, 0), X (X/2, 0) < 0,

and the first part of (iii) has been established.

We now prove the second part of (iii). Since (9 (X/2, 0) < 0, equationx

(2.21) ensures that q(/2, 0) < 0, and the use of this with (2.22) proves

xnn
the case rj=0. It was shown in the proof of Ui that Wa> 0 on 1

and that We (C1, n) = 0, n E (-h, 0), for all a E [X/4, X/2). By the strong

maximum principle,

0 > W a (, n) = (at, n) + 0 (N, n)

whence '*n (x, r) e 0 for all (/, n) , [A/4, X/2) x (-h, 0). This, along with

Theorem 2.3(vi) establishes (iii).

)/4 X/4
(iv) The function W is a rositiv-, harmonic function on R 4 , and

is zero on the line {(0, n) : ' (-h, 0)). Hence, by the strong maximum
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principle,

W (0, r) > 0 , n < (-h, 0)A

Therefore

3 (0, n) + 0, (X/2, n) > 0 , E (-h, 0)

whence, bv (iii),

X (0, 0) > - (X/2, 0) > 0 (2.L

However, by (2.21),

S (x (O, ) OX (/2, 0)

Y0(0, 0) + nQ( /2, 0) - A/ + A/2

A/ p + sin-

0

> 0, by (2.23) ,

and the first part of (iv) has been established.

It was shown in the proof of (ii) that W > 0 on Ra  for all

a c [X/4, X/2). For the case a = X/4, we have W = 0 on the lines

f(x, n) x = 0, A/4, f E (-h, 0)}. By the strong maximum principle,

0 < W/ (0, = C)r(O, n) + VXrl(X/2, n) , E (-h, 0)

which, together with (2.24), yields

O, (0, n) + (,/2, r) > 0 , n (-h, 0

Our aim at the outset was to design a cone which was invariant under t.-

operator in equation (2.8), and which was sufficiently sophisticated in ift.

stru(ctur, to give information about the shapio of solutions , at ,1'a t
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large p. The ultimate goal is to reach a firm conclusion ahr,.t th.. veracity

of Stokes' conjecture (that 0(0+) = 7/6 when l/t, = i. ". , through

this limiting process.

Our motivation comes from various numerical results !2; .46-147],

[5; p. 215], [24; p. 5721 which make it seem plausible that " should have

a unique zero in (0, X/2), if (11, 0) is in E . Physi a Iy, all this says

is that the wave has only one inflection point between crest and trough;

Theorem 2.6 says that there are none between A/4 and //2, -ut this does not

appear to help. The Serrin-Lavrentiev comparison theorems have been sug-

gested as a possible way to tackle the problem [10; pp. 356-357], but there are

difficulties in applying them in this case [29; p. 484]. (However, there are

other indications [19; p. 19] which suggest that the number of zeros of S'

approaches infinity as ii -

From the point of view of this section, a natural approach is to let N

be the set of all solutions in E which have the property that C' vanishes

only once in (0, A/2). One can use the local bifurcation theory to show that

N is not empty and non-trivial, and it is clearly closed. We have been

unable to show it to be open, but remark that if suffices to show that '"

and 0" cannot vanish simultaneously on [0, X/2]. For the analogous problem

in the theory of non-linear Sturm-Liouville problems [23; pp. 500-503] this

method works, because there 0' and 0'" cannot vanish simultaneously

(because of the uniqueness theorem for differential equations).

Finally, we remark that numerical evidence suggests that the zeros of

0' approach 0 as p approaches infinity; 0' being negative on (0, X/2)

in the limiting case of 1/" = 0, which means that the limiting wave is con-

vex (28; p. 147], [24; p. 576].
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3. ON THE CONVERGENCE OF PERIODIC WAVES

TO SOLITARY WAVES IN THE LONG-WAVE LIMIT

Throughout this section the mean depth h is fixed. The purpose here is

to show the sense in which the sets C of periodic water-waves converge to a

set C' of solitar , waves as the wavelength increases indefinitely. Recall

from section 1.2, that each set C contains exactly one point corresponding

to a uniform horizontal flow of depth h, and that this point (p,' 0) is the

point at which periodic waves of wavelength N and mean depth h bifurcate.

In other words, on a flow of depth h, periodic waves of wavelength A bifur-

cate from the horizontal flow when the mean velocity of the flow is

{(gA/27T) tanh (2iTh/)} 1 / 2 . Moreover, the value of p converges to 6/t as

X - (Theorem 1.3).

Let U be any bounded, open set in JR x C 0[0, 7t] such that (6/t, 0) E U.

Then, for all A sufficiently large, CA n aU i J0. The next theorem is the

main result of this paper. (Further properties of the function e constructed

below are given in the remarks followinq Theorem 3-5; in particular, part (i)

may be improved to 0 < -(s) < 7/3 on (0, 1).)

THEOREM 3.1. Suppose {A I c JR, and A t - as n , and suppose
n - n -

that CX n aU 3 $ for each n. If {(pn? 6n ) } c (0, -) x K0 is a sequence
n

such that (In, e ) E CX n U for each n, then the sequence {(pn' 0n)) is
n An# n

n

relatively compact in [6/7, ) K0 . If {" nk 0n)} is a subsequence
0'- n(k)' n(k))

of f(ni en) } such that
n n

(vn(k), en(k)) j (, 0) ' [6/r , ) x K0  , (3.1)

then (i) v > 6/7T, 0 9 (s) < iT/2 on (0, T) and (1j, 0) r U ;

(ii) (ii, ) is a solution of the equation for solitary waves (1.47).

(iii) The sequence {f), 0n(k)I converges in L (0, i) to f6, as
n(k)
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(UV) If c(V14(k)F e (k)) is calculated using X Ak instead of A irn

expression (1. 34), then

c ni(k). 8n(k) ~ 0g

(v) For each k, the free surface may be denoted by {(x, H k W)

X E (-x /2, X /2)) where Hk depends on X aden(k) 'n(k) -~n(k)' 
1 'n(k) 22- en(k)

according to the formulae (1.37) and (1.38). As k *

Hk ()-Hk(0- x)-H)

uniformly on compact intervals, where {(x, H(x)) :x s ]R} is the profile of

the solitary wave corresponding to the solution (U~, 6) of (1.47). The

function H may be calculated from (pi, 6) by the formulae (1.48), (1.49).

A proof of this theorem may be obtained by modifying t'ke arguments of

[I; Theorem 3.8]. The following lemmas facilitate this procedure.

LEMMA 3.2. For any non-negative, bounded function u on [0,N], whose

support has full measure, and for any ai > 0,

f (t)u(t) f MUt)ut

t t
S+ f fA (w)u(w)dw ai + f f (w) u(w) dw

0 0

if A > v > 0, and f,, f are defined by the expression (1.22).

Proof. Since f x(t) > f (t) for all t c [0, IT] when A > v, it will

suffice to show that

t t
fAx t) f f (w)u(w)dw > f (t) f fA(w)u(w)dw

0 0
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for all t E t0, 71]. In other words, it will suffice to show that

t
0 < f (fA(t)f (w) - f (t)fA(w))u(w)dw

0

t (f (t) f (w)

f fV(t)f (w) X ( f (w) u(w)dw
0 V t w

However, a simple calculation yields that fA/f is increasing on (0, IT),

and the proof is complete.

q.e.d.

LEMMA 3.3. For each A > 1/7r, let g, denote the function defined on

[0, 7r] by putting

f A (s), s E [0, 7 - 1/A]

gX(s) = (3.2)

0, s E (7r"- l/, 7r]

Then there exists a unique solution (y,' IP) of

(S)= f G(s,t) gX(t)(t)dt

0

with (y, ) [0, o) x K0  and 100 = 1. Moreover y 4- 6/7 as

A - w.e

Proof. The proof is similar to that of [1; Theorem 3.2]. Existence and

uniqueness follow immediately from the general theory of u -positive linear
0

operators, and that y A + 6/n follows by exactly the same argument as was

used to show that yn + 6/t in [1; Theorem 3.2].

q.e.d.

Proof of Theorem 3.1. Because of the obvious similarity between the

problem here and that of proving 1; Theorem 3.9], we shall limit ourselves to
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giving an outline of the proof. The lettfers (A'), (B'), (C'), etc., when

used below, refer to those points of the proof of f1; Theorem 3.9] so labelled.

Since [(in, 6n)} c U cR x C0 [0, 7] is a bounded sequence, there exists

a subsequence { ((k)I ' (k) ) and a corresponding sequence {X(k) I

such that

In(k) in 3R (3.3a)

en(k) e weakly in L2 (0, 7) , (3.3b)

sin 8n) a weakly in L2 (0, ) , (3.3c)

and

(k) + - in 3R

as k . We shall show that the conclusions (i) - (v) of the theorem hold

for this subsequence. For the sake of having a convenient notation, we shall

henceforth use {j.n 1, {8 n, { I to denote the subsequence for which (3.3)n n n

holds.

(i), (ii), (iii) An obvious adaptation of (A') - (D') yields that

6 6 and sin e - sin 0 in L2 (0, 7) as n - -; that e - e inn n n

C[0, 6] for each 6 E (0, 7); and that (P, 6) E [6/7r, -) x K0 is a solu-

tion of (1.47). The next step is to prove that e is non-trivial. To do this

we first show that if 6 = 0, then p = 6/i.

Now for each n,

fI (t)sin 6 (t)

en(s) = 3 f G(s,t) dt
0 + f f (w)sin 6 (w)dw

Un 0 n

2 G (t f) (t) sin 6 nt)
_> ; G~s,t) t
0 1 + I f(wsin 0 (w)dw

n 0 zn
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for all n > £, by Lemma 3.2 and the fact that A n t-- n

2g t(t) sin 6 n(t)-- 2/ G(s,t) tdt,

1 + f f ,(w)sin 6 (w)

n 0 P.

where is defined by (3.2). Therefore

fIT

I f G(st)gX (t) n (t)dt

6 CS) >2 A 0 X (3.4)
n - 3 n, Z 7(

n+ f (w)sin 6 (w)dw
n 0 91..

for all s E [0, T], where

sin 6 (s)
A = inf n
n,k £ EO-f-/ 1 (S)

Now multiplying this inequality by g , whose existence is guaranteed by

Lemma 3.3, and integrating gives

7T fiT O (t)e n(t)dt

YX£ f fn(S)) X(s)g X(s)ds > A 0 k 7(t)P 
t n l

z.0 t 9. - ' fA(w)sin6 (w)dw

lTinI 0  zA.

Thus

I + f0 f 6(wdsi w > A /Y

U(nd 0- n,2. X t

forall n>k. If e -0 in L2 (0, 7r) as n - -, then 6 +0 inoraln_ . f n n

C[O, 6] for each 6 c (0,7), and so A n,9. 1 as n for each fixed

Z. There results that
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I IU = lim 1/pn > -I

n X:Y

for each 2. Since y 4- 6/i, as Z + -, it follows that U < 6/i. But

(p, e) is a solution of (1.47) and so, by (1; Theorem 3.71, p > 6/it. We

have shown that if (.n1' e ) - (N , 0) in 3R x L2 (0, i), then U = 6/7.nn

From this observation, the method of (F') yields that f. e convergesA n
n

to fO in L1 (0, T), and then the method of (G') may be used to prove that

en - e in C 0[0, iT]. The function e must therefore be non-zero, for

otherwise, as we have seen, (1n, n) n (6/t, 0) in 3R x C0 [0, it]. This

contradicts the fact that U is an open set which contains (6/t, 0) in its

interior. That 0 < e(s) < 7t/2 on (0, T), and j. > 6/iT is proved in

[i; Theorem 3.7]. This completes the proof of (i), (ii), (iii).

(iv) By (1.23) and (1.34)

- 3/2
2V/ K~ (1 + kn(j f (t)cos n (t) )

n n dtfc N n' 8n ) =  nx n - t ndt)

n 0 1/30 f f (w)sin 8n(w)dw)

n 0 n

From (1.24) it follows that

2 vrl K, (1 + k
n n ,r+ T (3.5)
A 2hn

as n -o. Now for any t r (0, t),

f7 (t)cos a (t)2n dt
1 t
n (0 + f fl (wsin 0 (w)dw) I1/ 3

nl-n 0 n
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f (tCos 8) Ct)

t ~dt +

nO 0 + f f, (wsin e (w)dw) 1 3

n 0 nn

ftWcos 0 (t)
2 f at. (3.6)

n a + (wf sin 6 (w)dw)1/

n 0 nn

For any E > 0, choose ct(E) E (0, ff) such that for all n sufficiently

large Icos a(t) - 1i < e for all t E [cz(e), TI]. This can be done since

6 -~ e E K uniformly on [0, 7r]. Moreover, by (3.3a) and (iii), cd£) cann 0

be chosen so that

I - f tf~ (w)sin 6 (w)dw) 1/ - (+ f 7Tf(w)sin 9(w)dw) 1/ < C
n 0 xn n 0

for all t e fa(E), it] and for all n sufficiently large. From (3.6) it

follows that

Tr f (t cos en t)

n nO 0 - + f f~ (wsin 9 (w)dw) 1/3
11n 0 Ann

Tr f (tWcos 0 nt)
=lim-f n d

2 f (t) (1 -

> I n dt
n -- 00n lt( C- + f ITf (wsin e (w)dw)1/

n 0 Ann

< lim f~- n at. (3.7)

n-~ n 12L(£ + J 7 f(w)sin 6(w)dw) 1 / 3
-

0
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However, by (1.24) and (1.25),

lirX f f (t)dt lim fr f~ (t)dt (3.8)
n- n ct(E) n n-1- n 0 n

=lira -2 q (t)dt filira A"

n- n--n n0 n n. n 2h

Also, from (iii),

li + f (w)sin e (w)dw) 1 /3
n- n 0 xnn

1 r 1/3
(I + f f(w)sin e(w)dw)1/  (3.9)

0

Collecting (3.5) - (3.9), we find that

3/2 i /
2h t !-+ + f(w)sin e(w)dw) - E]

2 h 0

< lir c(in, )
n-a

S ( 3 (1 - ) -3/2 + f f(w)sin e(w)dw)1/ 2

-2h U 0

and since c is arbitrary, it follows that

nm c(U 6 ) -/ h + f f(w)sin O(w)dw) I / 2

nf0- n n 7t Ui 0

That this last quantity lies in an interval (vg-, 2vg) has been established

in (1; Theorems 3.9, 4.12, and the footnote to Theorem 3.7(c)].

(v) An analogous calculation to that just given yields (v).

q.e.d.

-61-



COROLLARY 3.4. The statement of this corollary is given in section 1.1.

Proof. By Thaorem 2.2, there exists (un' n) 6 CA  such that
n

10C0 = B, for any B C [0, ,/6). The result will follow by the method

used in the proof of Theorem 3.1, once it is established that the sequence

fun) is bounded. However

2f (t)sin 8 (t)
X nn

(nCS) = - G(s,t) t= dt
0 _+ f f. (wsin 9 (w)dw

~n
n 0 n

fa (t)sin 8 t)
n

f G(s,t) dt
0 + f (w) sin en w)dv

0 m

if n > m, by Lema 3.2. Without loss of generality suppose that U

Then, as in the proof of Theorem 2.2(iv), it can be shown that there exists

B > 0 such that 8 n(s) > B sin s, for all s c [0, f]. But this estimate

is enough to guarantee (by a routine adaptation of the methods of (U; section

5]) that a subsequence {e n(kI of {8n I converges in C[6, w], for each

6 c (0, w), to a non-trivial solution e of the equation

6(s) = fw Gjst) f(t)sin e(t) dtt
0 f f(wsin 8(wMdw

0

However, we know from [1; Theorem 5.2] that for such a function e,

lim B(s) > n/6. This contradicts the fact that en IC= B <

C-O+n0(0,,nI

q.e.d.
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Finally, we have the following result. Let S ) {(z, 6) ( (0, x) x

(W, 8) solves (1.47) and 6 91 0}. For all (u, 6) e S, the product

fe E L, (0, 71) ([; Theorem 4.1]). Let S' {(i, 6) eS (i, e) is the

limit, as A , in m x C0[0, i] of a sequence (u, 8Q) where

( 1 1 V e A ) E C } "

THEOREM 3.5. If C' is the maximal connected subset of S' which

contains (6/n, 0), then C' is closed, unbounded, and has all the properties

attributed to C in [l; Theorem 3.91. Clearly C' c C.

Proof. This is inediate, since it has been shown that the boundary U

of every bounded, open set U c 3R x C0 [0, 7) which contains (6/t, 0),

contains a point of C'. Since the set S' is obviously a closed subset of

5, and it has the property that bounded subsets of it are relatively compact,

El; Theorem 3.8], the result is immediate from 11; Theorem A6].

q.e.d.

Remarks. (a) Section 4 of 1] gives further properties of the elements

of C. In particular, the function 0 is real-analytic on [0, i), and so

the wave profile is an analytic curve in 3R2 , and the rate at which the free-

surface approaches its asymptotic level is estimated. In section 5 of [1], it

is shown that if {(u'p n ) C' and Pn na. as n- ., then a subsequencenn

converges to a non-trivial 'solitary wave of greatest height' which satisfies

(1.47) with U - -. The behaviour of this wave at its crest is similar to

that given in Theorem 2.2(vi).

Clearly the results of [19], quoted in Theorem 2.2(vii) for periodic

waves, hold also for solitary waves corresponding to C' or C. This agrees

with numerical results [18; p. 738].
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(b) Since periodic waves converge to solitary waves on compact sets as

the wavelength goes to infinity, it is reasonable to hope that the limiting

solitary wave will inherit some of the properties of periodic waves given in

section 2.3. Unfortunately, this has not been proved for the conclusions of

Theorem 2.6; only some parts of Theorem 2.3 hold in the solitary wave case.

The difficulty lies in the fact that R, - R , while the uniform convergence

of periodic waves to solitary waves is only on compact intervals. If, however,

the plan outlined in the remark following Theorem 2.6 could be implemented, then

conclusions would follow which would be compatible with the numerical results

on solitary waves (4; p. 1851; on the convergence of periodic waves to soli-

tary waves [51, and on the solitary wave of greatest height [16 p. 10].

The results of Theorem 2.4 do go over in the limit as A - =, and one can

show that elements of C' satisfy XG'(X) < O(X) and O(x) < n/3 on (0, c).
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APPENDIX

Periodic flows of infinite depth

THEOREM. Suppose that 8 is an odd, continuous function on [-nt, it]

with 0 < 6(s) < ir on (0, 7t), which satisfies the integral equation

I(s Tr 1 sin((s + t)/2) sin 0(t) dt(l
-(s f t n( - t)/2 tt(l

Tr IT sin(( -t)2) +f tsin e(w)dw
0

for some V > 0. Then 8 is real-analytic on [-7t, T] and 0 < 68(s) < 7t/ 3

on (0, it). Moreover, p > 3, and if X and c are positive real numbers

such that

3cA 1/ 1 fTcos 6(t) -dt ,(A2)

27rc Tr 1. +1f sin 6(w)dw) 1/3

then there exists a periodic wave of wavelength A on a flow of infinite

depth. The velocity of the flow at infinite depth is then c, and its speed

at the crest is given by

qc -3g 
c )1/

c 27tp

The free surface may be parametrized by (x, H x(x)), where x E (-X/2, X/2)

and for X E [0, X/21

2 2 130 - sin 6(t)
HW H x (0 (x c 2 f 2 9wd) dt, (A3)

-3gn a ~ -1 x)( + f 11snqwd~ /3

2p 0

whecre for 1 -11, 01
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11

-z (a) 2 dt (A4)
3gt 1 1/3

Proof. The proof that B is real-analytic and bounded by ir/3 follows

as in Theorems 2.2 and 2.4. To show that V > 3, multiply (Al) by sin s and

integrate over (-7r, 7r), using (1.27).

As before, there exists a harmonic function e on the unit disc such

that i(ei ) - O(s) for all s c (-7r, w], and

36 1 sin 6 (s) (S

e i 3 + f 8sin O(w)dw
10

Using the expansion of G given in (1.27), it follows from (Al) that for

all s e (-w, ir],

1 , 1 v sin is sin t sin e(t)Bcs)= j {( f It dt

-+ f sin O(w)dw
0

From this and Fubini's theorem there results that the Fourier series for B

is

a, sin is (A6)

where

a 1 -
f  

cos It n(- + f sin B(w)dw)dt (A7)
0

It follows that putting

r( ) + i((A) = S (S)
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defines an analytic function on the unit disc, and

-i i 1 1 s

(e i s ) + ii(e i ) = a0 - - tn(-+ f sin e(w)dw) + ie(s) (A9)
0

for all s E [-, w], where a 0o= f -n(-+f sin (w~dwldt
-7 0

Let c and A be positive real numbers chosen so that (A2) holds. Then

an analytic function T - iA can be defined on RA - {X + in -X/2 < X < A/2,

< 01 by putting

T(~ - ~(~ = (exp(-27nir]A)) + i8(exp(-2Inir,)t)

Hence o(x + iO) = -e(-2rX/X) and so

27r -sine (-2nX/A)

X+iO 3 + f sin e(w)dw
0

1 sin G(X) (AlO)
3 X

-- + f sin A(w)dw
0

where (3(x) - e(x + iO). Since Iel < n/3 on [-IT, ], it follows by the

maximum principle that 1I1 < i/3 in RA.

Now define an analytic function m on RX by putting

C
i;(O f exp( (C') - i (C'))d'

0

Since 5( _ /2 + in) = 0 for all n < 0, and since IT(c) - 0e(s)I

{ e, { RAF it follows that r is a conformal mapping from RA onto

an infinite region in the z-plane of the form S1 - {x + iy : -X/2 < x < X/2,
y < HA(x)}, and & HAW -tan G(ml(x + ili(x))). Since m is invertible,
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we can define a complex potential w = * + ii on SA by putting

I(z) c M- (z )

where c was chosen when A was chosen so that (A2) holds. Then for

z E SA,

u(z) - iv(z) = -d
dz

= -c exp(-T(m-l (z)))(cos 6(i-l(z)) + i sin 6(m-l(z)))

and it follows that c exp(-T(m-- l (z))) is the speed of the flow and

-O(m-l(z)) is the angle which the negative velocity vector makes with the

x-axis at a point z E S Moreover u(z) -iv(z) -*-c as IzI o,

z E S . From the definition of w, it follows that i - as Iz I -,

z E S., and , = 0 on the free surface rA = {(x, HA(X)) x c (-A/2, A/2)}.

Finally to show that the free surface condition is satisfied, we proceed

as follows. By (A8), (A9) and Cauchy's formula there results that

it - it .it1 = exp(;(e ) + ie(e ))ie t1 = exp(0) = 2 - it dt
i- e

exp (a 0 ir COS

-"r+ f sin e(w v sw t

0

and so, by our choice of A and c,

S0 2,rc 2  1/3 (All)exp(a 0) --= 3 Al

Hence

(is) 1 2wrc 2 1(+f si wdw ,

r(eS) - n ( _1n + f sin (w)dw)
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and so

T~ ~ 3 +g xO lc -~Li+. f sin O(w)dw) (A12)

Therefore

d 2
us- exp (-2T (x + i1) + g Imag m(x + iO)}

2w c 2 exp(-2T(X + iO))sin OWx
3X 1 + 2- inOwd g exp(f(X + io))sin 6(x + iO)

U 0

27rc 231 x
=exp(T(X + iO)){-i3X 2 si O(X) - gsin O(X)}I

2 7rc

=0

To complete the proof of the theorem we must verify that (M3), (A4) give the

vave profile. This is a routine calculation based on the method used in the

proof of Theorem 1.3. q.e.d.

Results similar to those in Theorems 2.4 - 2.6 hold if one replaces 0

by e and X/2 by vr.

Though the proof of this last theorem is in many respects similar to

that of Theorem 1.5, we have included it in order to obtain the following

corollary. We need the notion of a conjugate function which is defined as

follows. if u is an L 2-function whose Fourier series is
Go2

a 0 + (a I cos Is + bIsin is), then the function conjugate to u is

denoted by Cu and is the L 2 -function whose Fourier series is

S(a Isin to -b Icostis) (21.
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COROLLARY. If 8 satisfies (Al) for some V > 0, then e satisfies

the equation

0(s) = f V In sin((s + t)/2) exp(-3c6(t)sin e(t)dt
6 7 sin((s -t)/2)

where v . 3g

Proof. By (A6) - (A9)

- C6(t) = T(eit)

t
= a0 -jin( + f sin 8(w)dw)

0

whence by (All)

21rc2  1
exp(-3Ce(t)) = ti + j sin e(w)dw

0

Substituting this last expression into (Al) gives the required result.

q.e.d.

Remark. In the previous sections, the mean depth was held fixed as

A c. If we now fix X, and let h - -, then one can prove a result

analogous to Theorem 3.1, but the proof is essentially simpler, because the

limiting equation is non-singular. A word of caution is necessary however;

if t(Cn' en )) is a sequence of solutions of (1.31) corresponding to waves

of the same fixed wavelength A, but of different mean depths h - -, and
n

if {(p n) n c U, where U is an open set in R x C0 [0, A/2] containing

(6, 0), then a subsequence converges to (W, 0), where (11/2, 6) is a

solution of (Al). This may be seen from (1.31), since (1.17) and (1.22)

together give fA(x) 1/2 uniformly for t e [-r, w), as h .
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